
A U.S. Department of Energy
Office of Science Laboratory
Operated by The University of Chicago

Argonne National Laboratory

Office of Science
U.S. Department of Energy

Introduction to Channel
Access Clients

Kenneth Evans, Jr.
September 16, 2004

Part of the EPICS “Getting Started” Lecture Series

2

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Outline

• Channel Access Concepts
• Channel Access API
• Simple CA Client
• Simple CA Client with Callbacks
• EPICS Build System

3

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Channel Access Reference Manual

• The place to go for more information
• Found in the EPICS web pages

- http://www.aps.anl.gov/epics/index.php
- Look under Documents
- Also under Base, then a specific version of Base

http://www.aps.anl.gov/epics/index.php

4

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

EPICS Overview

MEDM MEDM Client Client Client MEDM

Server IOC IOC

Meter Power Supply Camera

IOC

Channel Access

5

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Search and Connect Procedure

MEDM MEDM Client Client Client MEDM

Server IOC IOC

Meter Power Supply Camera

IOC

3. TCP Connection

Let’s talk !

1. UDP Broadcast Sequence

Who has it ?

Check Check CheckCheck

2. UDP Reply

I have it !

IOC

6

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Search Request

• A search request consists of a sequence of UDP packets
- Only goes to EPICS_CA_ADDR_LIST
- Starts with a small interval (30 ms), that doubles each time
- Until it gets larger than 5 s, then it stays at 5 s
- Stops after 100 packets or when it gets a response
- Never tries again until it sees a beacon anomaly or creates a

new PV
- Total time is about 8 minutes to do all 100

• Servers have to do an Exist Test for each packet
• Usually connects on the first packet or the first few
• Non-existent PVs cause a lot of traffic

- Try to eliminate them

7

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Beacons
• A Beacon is a UDP broadcast packet sent by a Server
• When it is healthy, each Server broadcasts a UDP beacon at

regular intervals (like a heartbeat)
- EPICS_CA_BEACON_PERIOD, 15 s by default

• When it is coming up, each Server broadcasts a startup
sequence of UDP beacons
- Starts with a small interval (25 ms, 75 ms for VxWorks)
- Interval doubles each time
- Until it gets larger than 15 s, then it stays at 15 s

- Takes about 10 beacons and 40 s to get to steady state

• Clients monitor the beacons
- Determine connection status, whether to reissue searches

8

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Virtual Circuit Disconnect

• 3.13 and early 3.14
- Hang-up message or no response from server for 30 sec.
- If not a hang-up, then client sends “Are you there” query
- If no response for 5 sec, TCP connection is closed
- MEDM screens go white
- Clients reissue search requests

• 3.14 5 and later
- Hang-up message from server
- TCP connection is closed
- MEDM screens go white
- Clients reissue search requests

9

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Virtual Circuit Unresponsive

• 3.14.5 and later
- No response from server for 30 sec.
- Client then sends “Are you there” query
- If no response for 5 sec, TCP connection is not closed

- For several hours, at least
- MEDM screens go white
- Clients do not reissue search requests

- Helps with network storms

- Clients that do not call ca_poll frequently get a virtual circuit
disconnect even though the server may be OK
- Clients written for 3.13 but using 3.14 may have a problem
- May be changed in future versions

10

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Important Environment Variables
• EPICS_CA_ADDR_LIST

- Determines where to search
- Is a list (separated by spaces)

- “123.45.1.255 123.45.2.14 123.45.2.108”
- Default is broadcast addresses of all interfaces on the host

- Works when servers are on same subnet as Clients
- Broadcast address

- Goes to all servers on a subnet
- Example: 123.45.1.255
- Use ifconfig –a on UNIX to find it (or ask an administrator)

• EPICS_CA_AUTO_ADDR_LIST
- YES: Include default addresses above in searches
- NO: Do not search on default addresses
- If you set EPICS_CA_ADDR_LIST, usually set this to NO

11

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

EPICS_CA_ADDR_LIST

MEDM MEDM Client Client Client MEDM

Server IOC IOC

Meter Power Supply Camera

IOC

Subnet 1

Specific

123.45.2.108

Broadcast

123.45.1.255

Not Included

Subnet 2

12

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Other Environment Variables

• CA Client
EPICS_CA_ADDR_LIST
EPICS_CA_AUTO_ADDR_LIST
EPICS_CA_CONN_TMO
EPICS_CA_BEACON_PERIOD
EPICS_CA_REPEATER_PORT
EPICS_CA_SERVER_PORT
EPICS_CA_MAX_ARRAY_BYTES
EPICS_TS_MIN_WEST

• See the Channel Access Reference Manual for more
information

• CA Server
EPICS_CAS_SERVER_PORT
EPICS_CAS_AUTO_BEACON_ADDR_LIST
EPICS_CAS_BEACON_ADDR_LIST
EPICS_CAS_BEACON_PERIOD
EPICS_CAS_BEACON_PORT
EPICS_CAS_INTF_ADDR_LIST
EPICS_CAS_IGNORE_ADDR_LIST

13

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

3.13 and 3.14 Similarities
• Much effort has done into making clients written for 3.13 work

with 3.14 with no changes to the coding
• Even large programs like MEDM have had to make only a few

minor changes
• This means existing programs typically do not need to be

rewritten
- This is good!

• In contrast, Channel Access Servers require many changes in
converting to 3.14

14

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

3.13 and 3.14 Differences
• 3.14 is threaded

- Your program does not have to be threaded
• 3.14 has different names for some functions

- ca_context_create for ca_task_initialize
- ca_context_destroy for ca_task_exit
- ca_create_channel for ca_search_and_connect
- ca_create_subscription for ca_add_event
- ca_clear_subscription for ca_clear_event
- The new functions may have more capabilities, usually related

to threading
- We will use the new names

• 3.14 has a different mechanism for lost connections
- Virtual circuit unresponsive (Not available in 3.13)
- Virtual circuit disconnected

15

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Basic Procedure for a Channel Access Client
• Initialize Channel Access

- ca_task_initialize or ca_context_create
• Search

- ca_search_and_connect or ca_create_channel
• Do get or put

- ca_get or ca_put
• Monitor

- ca_add_event or ca_create_subscription
• Give Channel Access a chance to work

- ca_poll, ca_pend_io, ca_pend_event
• Clear a channel

- ca_clear_channel
• Close Channel Access

- ca_task_exit or ca_context_destroy

16

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

cadef.h

• All C or C++ programs must include cadef.h
- #include <cadef.h>

• You can look at this file to get more insight into Channel
Access

• This presentation will use C examples
- We will try to emphasize concepts, not the language
- Even if you do not use C, it is important to understand what is

going on behind what you do use

17

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

ca_context_create
enum ca_preemptive_callback_select {

ca_disable_preemptive_callback,
ca_enable_preemptive_callback };

int ca_context_create (
enum ca_preemptive_callback_select SELECT);

• Should be called once prior to any other calls
• Sets up Channel Access
• Use SELECT=ca_disable_preemptive_callback

- Unless you intend to do threads
• Can also use ca_task_initialize() for 3.13 compatibility

18

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

ca_context_destroy
void ca_context_destroy ();

• Should be called before exiting your program
• Shuts down Channel Access
• Can also use ca_task_exit() for 3.13 compatibility

19

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

ca_create_channel
typedef void caCh (struct connection_handler_args ARGS);
int ca_create_channel (

const char *PVNAME,
caCh *CALLBACK,
void *PUSER,
capri PRIORITY,
chid *PCHID);

• Sets up a channel and starts the search process
• PVNAME is the name of the process variable
• CALLBACK is the name of your connection callback (or NULL)

- The callback will be called whenever the connection state
changes, including when first connected

- Information about the channel is contained in ARGS
- Use NULL if you don’t need a callback

20

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

ca_create_channel, cont’d
typedef void caCh (struct connection_handler_args ARGS);
int ca_create_channel (

const char *PVNAME,
caCh *CALLBACK,
void *PUSER,
capri PRIORITY,
chid *PCHID);

• PUSER is a way to pass additional information
- Whatever you have stored at this address
- It is stored in the chid
- In C++ it is often the this pointer for a class
- Use NULL if you don’t need it

• Use PRIORITY=CA_PRIORITY_DEFAULT

21

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

ca_create_channel, cont’d
typedef void caCh (struct connection_handler_args ARGS);
int ca_create_channel (

const char *PVNAME,
caCh *CALLBACK,
void *PUSER,
capri PRIORITY,
chid *PCHID);

• A chid is a pointer to (address of) an opaque struct used by
Channel Access to store much of the channel information
- chanId is the same as chid (typedef chid chanId;)

• PCHID is the address of the chid pointer (Use &CHID)
- You need to allocate space for the chid before making the call
- Channel Access will allocate space for the struct and return

the address

22

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

ca_create_channel, cont’d
typedef void caCh (struct connection_handler_args ARGS);
int ca_create_channel (

const char *PVNAME,
caCh *CALLBACK,
void *PUSER,
capri PRIORITY,
chid *PCHID);

• Use macros to access the information in the chid
- ca_name(CHID) gives the process variable name
- ca_state(CHID) gives the connection state
- ca_puser(CHID) gives the PUSER you specified
- Etc.

• The ARGS struct in the connection callback includes the chid

• Can also use ca_search_and connect() for 3.13 compatibility

23

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

ca_clear_channel
int ca_clear_channel (chid CHID);

• Shuts down a channel and reclaims resources
• Should be called before exiting the program
• CHID is the same chid used in ca_create_channel

24

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

ca_array_get
int ca_array_get (

chtype TYPE,
unsigned long COUNT,
chid CHID,
void *PVALUE);

• Requests a scalar or array value from a process variable
• Typically followed by ca_pend_io
• TYPE is the external type of your variable

- Use one of the DBR_xxx types in db_access.h
- E.g. DBR_DOUBLE or DBR_STRING

• COUNT is the number of array elements to read
• CHID is the channel identifier from ca_create_channel
• PVALUE is where you want the value(s) to go

- There must be enough space to hold the values

25

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

ca_array_get_callback
typedef void (*pCallBack) (struct event_handler_args

ARGS);
int ca_array_get_callback (

chtype TYPE,
unsigned long COUNT,
chid CHID,
pCallBack USERFUNC,
void *USERARG);

• Requests a scalar or array value from a process variable, using
a callback

• TYPE is the external type of your variable
- Use one of the DBR_xxx types in db_access.h
- E.g. DBR_DOUBLE or DBR_STRING

• COUNT is the number of array elements to read

26

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

ca_array_get_callback, cont’d
typedef void (*pCallBack) (struct event_handler_args

ARGS);
int ca_array_get_callback (

chtype TYPE,
unsigned long COUNT,
chid CHID,
pCallBack USERFUNC,
void *USERARG);

• CHID is the channel identifier from ca_create_channel
• USERFUNC is the name of your callback to be run when the

operation completes
• USERARG is a way to pass additional information to the callback

- struct event_handler_args has a void *usr member

27

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

ca_array_put
int ca_array_put (

chtype TYPE,
unsigned long COUNT,
chid CHID,
const void *PVALUE);

• Requests writing a scalar or array value to a process variable
• Typically followed by ca_pend_io
• TYPE is the external type of your supplied variable

- Use one of the DBR_xxx types in db_access.h
- E.g. DBR_DOUBLE or DBR_STRING

• COUNT is the number of array elements to write
• CHID is the channel identifier from ca_create_channel
• PVALUE is where the value(s) to be written are found

28

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

ca_array_put_callback
typedef void (*pCallBack) (struct event_handler_args

ARGS);
int ca_array_put_callback (

chtype TYPE,
unsigned long COUNT,
chid CHID,
const void *PVALUE,
pCallBack USERFUNC,
void *USERARG);

• Requests writing a scalar or array value to a process variable,
using a callback

• TYPE is the external type of your variable
- Use one of the DBR_xxx types in db_access.h
- E.g. DBR_DOUBLE or DBR_STRING

29

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

ca_array_put_callback, cont’d
typedef void (*pCallBack) (struct event_handler_args

ARGS);
int ca_array_put_callback (

chtype TYPE,
unsigned long COUNT,
chid CHID,
const void *PVALUE,
pCallBack USERFUNC,
void *USERARG);

• COUNT is the number of array elements to write
• CHID is the channel identifier from ca_create_channel
• PVALUE is where the value(s) to be written are found

30

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

ca_array_put_callback, cont’d
typedef void (*pCallBack) (struct event_handler_args

ARGS);
int ca_array_put_callback (

chtype TYPE,
unsigned long COUNT,
chid CHID,
const void *PVALUE,
pCallBack USERFUNC,
void *USERARG);

• USERFUNC is the name of your callback to be run when the
operation completes

• USERARG is a way to pass additional information to the callback
- struct event_handler_args has a void *usr member

31

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

ca_create_subscription
typedef void (*pCallBack) (struct event_handler_args

ARGS);
int ca_create_subscription (

chtype TYPE,
unsigned long COUNT,
chid CHID,
unsigned long MASK,
pCallBack USERFUNC,
void *USERARG,
evid *PEVID);

• Specify a callback function to be invoked whenever the
process variable undergoes significant state changes
- Value, Alarm status, Alarm severity
- This is the way to monitor a process variable

32

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

ca_create_subscription, cont’d
typedef void (*pCallBack) (struct event_handler_args

ARGS);
int ca_create_subscription (

chtype TYPE,
unsigned long COUNT,
chid CHID,
unsigned long MASK,
pCallBack USERFUNC,
void *USERARG,
evid *PEVID);

• TYPE is the external type you want returned
- Use one of the DBR_xxx types in db_access.h
- E.g. DBR_DOUBLE or DBR_STRING

• COUNT is the number of array elements to monitor

33

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

ca_create_subscription, cont’d
typedef void (*pCallBack) (struct event_handler_args

ARGS);
int ca_create_subscription (

chtype TYPE,
unsigned long COUNT,
chid CHID,
unsigned long MASK,
pCallBack USERFUNC,
void *USERARG,
evid *PEVID);

• CHID is the channel identifier from ca_create_channel
• MASK has bits set for each of the event trigger types requested

- DBE_VALUE Value changes
- DBE_LOG Exceeds archival deadband
- DBE_ALARM Alarm state changes

34

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

ca_create_subscription, cont’d
typedef void (*pCallBack) (struct event_handler_args

ARGS);
int ca_create_subscription (

chtype TYPE,
unsigned long COUNT,
chid CHID,
unsigned long MASK,
pCallBack USERFUNC,
void *USERARG,
evid *PEVID);

• USERFUNC is the name of your callback to be run when the state
change occurs

• USERARG is a way to pass additional information to the callback
- struct event_handler_args has a void *usr member

35

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

ca_create_subscription, cont’d
typedef void (*pCallBack) (struct event_handler_args

ARGS);
int ca_create_subscription (

chtype TYPE,
unsigned long COUNT,
chid CHID,
unsigned long MASK,
pCallBack USERFUNC,
void *USERARG,
evid *PEVID);

• PEVID is the address of an evid (event id)
- You need to allocate space for the evid before making the call
- Similar to a chid
- Only used to clear the subscription (Can be NULL if not needed)

36

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

ca_clear_subscription
int ca_clear_subscription (evid EVID);

• Used to remove a monitor callback
• EVID is the evid from ca_create_subscription

37

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

ca_add_exception_event
typedef void (*pCallback) (struct exception_handler_args

ARGS);
int ca_add_exception_event (

pCallback USERFUNC,
void *USERARG);

• Used to replace the default exception handler
• USERFUNC is the name of your callback to be run when an

exception occurs
- Use NULL to remove the callback

• USERARG is a way to pass additional information to the callback
- struct exception_handler_args has a void *usr member

38

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Request Handling
• The preceding routines are requests

- They only queue the operation
- They hardly ever fail

- The return values are almost always ECA_NORMAL
- (But they should be checked)

• These requests are only processed when one of the following
is called
- ca_pend_io Blocks until requests are processed
- ca_pend_event Blocks a specified time
- ca_poll Processes current work only

• If these routines are not called, the requests are not processed
and background tasks are also not processed

• The rule is that one of these should be called every 100 ms
- To allow processing of background tasks (beacons, etc.)

39

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

ca_pend_io
int ca_pend_io (double TIMEOUT);

• Flushes the send buffer
• Blocks for up to TIMEOUT seconds until

- Outstanding gets complete
- Searches with no callback have connected

• Returns ECA_NORMAL when gets and searches are complete
• Returns ECA_TIMEOUT otherwise

- Means something went wrong
- Get requests can be reissued
- Search requests can be reissued after ca_clear_channel

• Channel Access background tasks are performed
- Unless there were no outstanding I/O requests

• Use with searches, gets, and puts that don’t use callbacks

40

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

ca_pend_event
int ca_pend_event (double TIMEOUT);

• Flushes the send buffer
• Process background tasks for TIMEOUT seconds

- Does not return until TIMEOUT seconds have elapsed
• Use this when your application doesn’t have to do anything

else

• Use ca_pend_event instead of sleep

41

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

ca_poll
int ca_poll ();

• Flushes the send buffer
• Process outstanding tasks only

- Exits when there are no more outstanding tasks
- Otherwise similar to ca_pend_event

• Use this when your application has other things to do
- E.g. most GUI programs

• Be sure it is called at least every 100 ms

42

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

CHID Macros
chtype ca_field_type (CHID);
unsigned ca_element_count (CHID);
char *ca_name (CHID);
void *ca_puser (CHID);
void ca_set_puser (chid CHID, void *PUSER);
enum channel_state ca_state (CHID);
enum channel_state {

cs_never_conn, Valid chid, server not found or unavailable
cs_prev_conn, Valid chid, previously connected to server
cs_conn, Valid chid, connected to server
cs_closed }; Channel deleted by user

char *ca_host_name (CHID);
int ca_read_access (CHID);
int ca_write_access (CHID);

43

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

ca_connection_handler_args
struct ca_connection_handler_args {

chanId chid; Channel id
long op; CA_OP_CONN_UP or

CA_OP_CONN_DOWN
};

• Used in connection callback
• Note chanId is used rather than chid

- Some compilers don’t like chid chid;

44

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

event_handler_args
typedef struct event_handler_args {

void *usr; User argument supplied with request
chanId chid; Channel ID
long type; The type of the item returned
long count; The element count of the item returned
const void *dbr; A pointer to the item returned
int status; ECA_xxx status of the requested op

} evargs;

• Used in get, put, and monitor callbacks
• Do not use the value in dbr if status is not ECA_NORMAL

45

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Channel Access API Functions
ca_get
ca_host_name
ca_message
ca_name
ca_read_access
ca_replace_access_rights_event
ca_replace_printf_handler
ca_pend_event
ca_pend_io
ca_poll
ca_puser
ca_put
ca_set_puser
ca_signal
ca_sg_block
ca_sg_create

ca_add_exception_event
ca_attach_context
ca_clear_channel
ca_clear_subscription
ca_client_status
ca_context_create
ca_context_destroy
ca_context_status
ca_create_channel
ca_create_subscription
ca_current_context
ca_dump_dbr()
ca_element_count
ca_field_type
ca_flush_io

ca_sg_delete
ca_sg_get
ca_sg_put
ca_sg_reset
ca_sg_test
ca_state
ca_test_event
ca_test_io
ca_write_access
channel_state
dbr_size[]
dbr_size_n
dbr_value_size[]
dbr_type_to_text
SEVCHK

ca_add_event
ca_clear_event

Deprecated

ca_search
ca_search_and_connect

ca_task_exit
ca_task_initialize

46

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Simple CA Client
• Defines and includes

/* Simple CA client */

#define TIMEOUT 1.0
#define SCA_OK 1
#define SCA_ERR 0
#define MAX_STRING 40

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <cadef.h>

47

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Simple CA Client
• Function prototypes and global variables

/* Function prototypes */
int main(int argc, char **argv);
static int parseCommand(int argc, char **argv);
static void usage(void);

/* Global variables */
int pvSpecified=0;
char name[MAX_STRING];
char value[MAX_STRING];
double timeout=TIMEOUT;

48

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Simple CA Client
• Parse the command line

int main(int argc, char **argv)
{

int stat;
chid pCh;

/* Parse the command line */
if(parseCommand(argc,argv) != SCA_OK) exit(1);
if(!pvSpecified) {

printf("No PV specified\n");
exit(1);

}

49

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Simple CA Client
• Initialize Channel Access

/* Initialize */
stat=ca_context_create(ca_disable_preemptive_callback);
if(stat != ECA_NORMAL) {

printf("ca_context_createfailed:\n%s\n",
ca_message(stat));

exit(1);
}

50

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Simple CA Client
• Request the search

/* Search */
stat=ca_create_channel(name,NULL,NULL,
CA_PRIORITY_DEFAULT,&pCh);

if(stat != ECA_NORMAL) {
printf("ca_create_channel failed:\n%s\n",
ca_message(stat));

exit(1);
}

51

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Simple CA Client
• Call ca-pend_io to process the search

/* Process search */
stat=ca_pend_io(timeout);
if(stat != ECA_NORMAL) {

printf(“search timed out after %g sec\n",
timeout);

exit(1);
}

52

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Simple CA Client
• Request the get

/* Get the value */
stat=ca_array_get(DBR_STRING,1,pCh,&value);
if(stat != ECA_NORMAL) {

printf("ca_array_get:\n%s\n",
ca_message(stat));

exit(1);
}

53

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Simple CA Client
• Call ca-pend_io to process the get

/* Process get */
stat=ca_pend_io(timeout);
if(stat != ECA_NORMAL) {

printf(“get timed out after %g sec\n",
timeout);

exit(1);
}
printf("The value of %s is %s\n",name,value)

54

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Simple CA Client
• Clean up

/* Clear the channel */
stat=ca_clear_channel(pCh);
if(stat != ECA_NORMAL) {

printf("ca_clear_channel failed:\n%s\n",
ca_message(stat));

}

/* Exit */
ca_context_destroy();
return(0);

}

55

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Simple CA Client
• Output

simplecaget evans:calc
The value of evans:calc is 6

56

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Simple CA Client with Callbacks
• Defines and includes

/* Simple CA client with Callbacks */

#define TIMEOUT 1.0
#define SCA_OK 1
#define SCA_ERR 0
#define MAX_STRING 40

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <string.h>
#include <cadef.h>

57

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Simple CA Client with Callbacks
• Function prototypes

/* Function prototypes */
int main(int argc, char **argv);
static void connectionChangedCB(struct

connection_handler_args args);
static void valueChangedCB(struct event_handler_args

args);
static char *timeStamp(void);
static int parseCommand(int argc, char **argv);
static void usage(void);

58

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Simple CA Client with Callbacks
• Global variables

/* Global variables */
int pvSpecified=0;
char name[MAX_STRING];
time_t curTime, startTime;
double timeout=TIMEOUT;

59

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Simple CA Client with Callbacks
• Parse the command line

int main(int argc, char **argv)
{

int stat;
chid pCh;

/* Parse the command line */
if(parseCommand(argc,argv) != SCA_OK) exit(1);
if(!pvSpecified) {

printf("No PV specified\n");
exit(1);

}

60

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Simple CA Client with Callbacks
• Initialize Channel Access

/* Initialize */
stat=ca_context_create(ca_disable_preemptive_callback);
if(stat != ECA_NORMAL) {

printf("ca_context_createfailed:\n%s\n",
ca_message(stat));

exit(1);
}

61

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Simple CA Client with Callbacks
• Search

/* Search */
stat=ca_create_channel(name,connectionChangedCB,NULL,
CA_PRIORITY_DEFAULT,&pCh);

if(stat != ECA_NORMAL) {
printf("ca_create_channel failed:\n%s\n",
ca_message(stat));

exit(1);
}
printf("%s Search started for %s\n",timeStamp(),name);

62

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Simple CA Client with Callbacks
• Wait in ca_pend_event for the callbacks to occur

/* Wait */
startTime=curTime;
ca_pend_event(timeout);
printf("%s ca_pend_event timed out after %g sec\n",
timeStamp(),timeout);

63

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Simple CA Client with Callbacks
• Clean up

/* Clear the channel */
stat=ca_clear_channel(pCh);
if(stat != ECA_NORMAL) {

printf("ca_clear_channel failed:\n%s\n",
ca_message(stat));

}

/* Exit */
ca_context_destroy();
return(0);

}

64

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Simple CA Client with Callbacks
• Connection callback implementation

static void connectionChangedCB(struct
connection_handler_args args)

{
chid pCh=args.chid;
int stat;

/* Branch depending on the state */
switch(ca_state(pCh)) {

65

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Simple CA Client with Callbacks
• Connection callback implementation

case cs_conn:
printf("%s Connection successful\n",timeStamp());
stat=ca_array_get_callback(DBR_STRING,1,pCh,
valueChangedCB,NULL);

if(stat != ECA_NORMAL) {
printf("ca_array_get_callback:\n%s\n",
ca_message(stat));

exit(1);
}
break;

66

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Simple CA Client with Callbacks
• Connection callback implementation

case cs_never_conn:
printf("%s Cannot connect\n",timeStamp());
break;

case cs_prev_conn:
printf("%s Lost connection\n",timeStamp());
break;

case cs_closed:
printf("%s Connection closed\n",timeStamp());
break;

}
}

67

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Simple CA Client with Callbacks
• Value changed callback implementation

static void valueChangedCB(struct event_handler_args args)
{
/* Print the value */
if(args.status == ECA_NORMAL && args.dbr) {

printf("%s Value is: %s\n",timeStamp(),
(char *)args.dbr);

printf("Elapsed time: %ld sec\n",
curTime-startTime);

}
}

68

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Simple CA Client with Callbacks
• Output

simplecagetcb evans:calc
Sep 14 18:31:55 Search started for evans:calc
Sep 14 18:31:55 Connection successful
Sep 14 18:31:55 Value is: 5
Elapsed time: 0 sec
Sep 14 18:31:56 ca_pend_event timed out after 1 sec

• Time for this operation is typically a few ms

69

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Source files for Simple Get Clients

• Some of the code that is not related to Channel Access has not
been shown

• All the files necessary to build a project as an EPICS Extension
should be available with the presentation
- Makefile
- Makefile.Host
- simplecaget.c
- simplecagetcb.c
- LICENSE

• Stored as simpleCA.tar.gz

70

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

EPICS Build System

• Supports both native and GNU compilers
• Builds multiple types of components

- libraries, executables, headers, scripts, java classes, …
• Supports multiple host and target operating systems
• Builds for all hosts and targets in a single <top> tree

- epics/base
- epics/extensions

• Allows sharing of components across <top> trees
• Has different rules and syntax for 3.13 and 3.14

71

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

System Requirements

• Required software
- Perl version 5 or greater
- GNU make, version 3.78.1 or greater
- C++ compiler and linker (GNU or host vendor's compiler)

• Optional software
- Tornado II and board support packages
- RTEMS development tools and libraries
- Motif, X11, JAVA, TK/TCL…

72

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

User Requirements

• Set an environment variable to specify the architecture
- EPICS_HOST_ARCH for 3.14

- solaris-sparc, linux-x86, win32-x86, darwin-ppc, etc.
- HOST_ARCH for 3.13

- solaris, Linux, WIN32, etc.
• Set the PATH so the required components can be found

- Perl, GNU make, C and C++ compilers
- System commands (e.q. cp, rm, mkdir)

73

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Typical Extensions Build Tree
epics/base <top> for base
epics/extensions <top> for extensions

config 3.13 configuration
configure 3.14 configuration
bin Binaries by architecture

solaris
solaris-sparc

lib Libraries by architecture
solaris
solaris-sparc

src Sources by application
simpleCA Application source files

O.solaris Binaries for this application
O.solaris-sparc

74

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Getting Started with an Extension
• Make a directory structure for base

- E.g. epics/base
• Obtain base and build it

- Set COMPAT_TOOLS_313 first if necessary (see later)
• Make a directory structure for extensions

- E.g. epics/extensions
• Get extensions/config and configure from the EPICS pages

- http://www.aps.anl.gov/epics/extensions/index.php
• Set EPICS_BASE to your desired version of base

- In extensions/config/RELEASE for 3.13
- In extensions/configure/RELEASE for 3.14

• Type gnumake (or make) in extensions
• Get an extension and put it under extensions/src
• Type gnumake (or make) in your application directory

http://www.aps.anl.gov/epics/extensions/index.php

75

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Using the 3.13 Build Rules for Extensions
• Most existing extensions are still set up for 3.13 builds

- There is a Makefile and a Makefile.Host
- Makefile.Host is most important and has 3.13 syntax
- Can still use a 3.14 base

• Set HOST_ARCH for your platform
- solaris, Linux, WIN32, etc.

• Set EPICS_HOST_ARCH for your platform
- solaris-sparc, linux-x86, win32-x86, darwin-ppc, etc.

• Configuration is in extensions/config
- RELEASE (Specifies what base to use, can be 3.14)
- CONFIG_SITE_xxx (Specifies local changes for xxx arch)

• Before building a 3.14 base
- Modify base/configure/CONFIG_SITE

- COMPAT_TOOLS_313 = YES

76

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Using the 3.14 Build Rules for Extensions

• Go to the the EPICS page for your version of base
- http://www.aps.anl.gov/epics/base/index.php

• Read the README
- It is very extensive
- Should tell you everything you need to know

• There is a only a Makefile and it uses 3.14 syntax
• Set EPICS_HOST_ARCH for your platform

- solaris-sparc, linux-x86, win32-x86, darwin-ppc, etc.
• Configuration is in extensions/configure

- RELEASE (Specifies what base)
- os/CONFIG_SITE_xxx (Specifies local changes for xxx arch)

http://www.aps.anl.gov/epics/base/index.php

77

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Makefile for Simple Get Clients
TOP = ../..
include $(TOP)/config/CONFIG_EXTENSIONS
include $(TOP)/config/RULES_ARCHS

78

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Makefile.Host for Simple Get Clients
TOP = ../../..
include $(TOP)/config/CONFIG_EXTENSIONS

HOST_OPT = NO
CMPLR = STRICT

PROD = simplecaget simplecagetcb

PROD_LIBS = ca Com
ca_DIR = $(EPICS_BASE_LIB)
Com_DIR = $(EPICS_BASE_LIB)

simplecaget_SRCS += simplecaget.c
simplecagetcb_SRCS += simplecagetcb.c

include $(TOP)/config/RULES.Host

79

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Acknowledgements

• Jeff Hill [LANL] is responsible for EPICS Channel Access and
has developed almost all of it himself

• Janet Anderson [ANL] is responsible for and has developed
most of the EPICS Build System

80

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Thank You

This has been an
APS Controls Presentation

81

Pioneering
Science and
Technology

Office of Science
U.S. Department

of Energy

Thank You

This has been an
APS Controls Presentation

	Introduction to Channel Access Clients
	Outline
	Channel Access Reference Manual
	EPICS Overview
	Search and Connect Procedure
	Search Request
	Beacons
	Virtual Circuit Disconnect
	Virtual Circuit Unresponsive
	Important Environment Variables
	EPICS_CA_ADDR_LIST
	Other Environment Variables
	3.13 and 3.14 Similarities
	3.13 and 3.14 Differences
	Basic Procedure for a Channel Access Client
	cadef.h
	ca_context_create
	ca_context_destroy
	ca_create_channel
	ca_create_channel, cont’d
	ca_create_channel, cont’d
	ca_create_channel, cont’d
	ca_clear_channel
	ca_array_get
	ca_array_get_callback
	ca_array_get_callback, cont’d
	ca_array_put
	ca_array_put_callback
	ca_array_put_callback, cont’d
	ca_array_put_callback, cont’d
	ca_create_subscription
	ca_create_subscription, cont’d
	ca_create_subscription, cont’d
	ca_create_subscription, cont’d
	ca_create_subscription, cont’d
	ca_clear_subscription
	ca_add_exception_event
	Request Handling
	ca_pend_io
	ca_pend_event
	ca_poll
	CHID Macros
	ca_connection_handler_args
	event_handler_args
	Channel Access API Functions
	Simple CA Client
	Simple CA Client
	Simple CA Client
	Simple CA Client
	Simple CA Client
	Simple CA Client
	Simple CA Client
	Simple CA Client
	Simple CA Client
	Simple CA Client
	Simple CA Client with Callbacks
	Simple CA Client with Callbacks
	Simple CA Client with Callbacks
	Simple CA Client with Callbacks
	Simple CA Client with Callbacks
	Simple CA Client with Callbacks
	Simple CA Client with Callbacks
	Simple CA Client with Callbacks
	Simple CA Client with Callbacks
	Simple CA Client with Callbacks
	Simple CA Client with Callbacks
	Simple CA Client with Callbacks
	Simple CA Client with Callbacks
	Source files for Simple Get Clients
	EPICS Build System
	System Requirements
	User Requirements
	Typical Extensions Build Tree
	Getting Started with an Extension
	Using the 3.13 Build Rules for Extensions
	Using the 3.14 Build Rules for Extensions
	Makefile for Simple Get Clients
	Makefile.Host for Simple Get Clients
	Acknowledgements
	Thank You
	Thank You

